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Abstract·· The transient scattering of SH waves by surface-breaking and sub-surface cracks normal
to the free surface of a half-space is investigated. The problem is first solved in the frequency domain
by an efficient hybrid method which combines the finite element method (FEM) with the boundary
integral representation (BIR). The transient responses are then obtained by inverting the spectra
via fast Fourier transform (FFT) routine. The shape of the incident pulse is a Ricker wavelet.
Graphical results are presented for the surface displacements, crack opening displacements, and
dynamic stress intensity factors to show the significant effects due to the presence of the cracks. The
wave propagation can be clearly observed, so that the mechanism of SH-wave scattering by cracks
can be easily understood by this study. Furthermore, the scattered waves received on the free surface
can be used successfully to detect the location, length, and depth of the crack. 1997 Elsevier
Science Ltd.

I. INTRODUCTION

Problems of scattering ofelastic waves by a crack are ofconsiderable importance in a variety
of engineering applications. In ultrasonic nondestructive evaluation (NDE) techniques, the
interest is in the scattered wave field which carries a great deal of information on the
characteristics of the crack. In fracture mechanics, the interest is in the determination of
the stress field near the crack-tip as a prerequisite to the study of crack propagation under
dynamic loading. Among the crack configurations that are usual1y considered in NDE and
fracture mechanics, the surface-breaking and sub-surface cracks are of distinct practical
significance. One of the objectives of this paper is to enhance the theoretical understanding
of the wave scattering mechanism by such cracks.

Scattering of elastic waves by a crack has been studied by many authors. Mendelsohn
et al. (1980), Achenbach and Brind (198Ia, 198Ib), Brind and Achenbach (1981), and Keer
et al. (1984) have used an integral eq uation approach to study scattering of elastic waves
by surface-breaking and sub-surface cracks. Scattering of SH waves by surface-breaking
cracks were studied by Stone et al. (1980) using an integral equation formulation and by
Datta (1979) and Datta et at. (1982) using a matched asymptotic expansion technique valid
at long wavelengths as wel1 as a combined finite element and analytical expansion technique,
which is useful for long and intermediate wavelengths. Kundu and Mal (1981) solved the
inplane edge crack problem by the application of an asymptotic theory of diffraction. In
al1 these studies attention was restricted to the response in frequency domain only. In recent
years, Scandrett and Achenbach (1987), Saffari and Bond (1987), and Harumi and Uchida
(1990) studied the time-domain responses of cracks by using a finite difference method.
The transient response of the surface of a layered half-space with interface cracks, excited
by a plane SH-wave, was investigated by Karim and Kundu (1988) using singular integral
equations.
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The method adopted here is a combined boundary integral and finite element approach.
The finite element method is most suitable for modeling problems with complex geometries
and different materials. Problems of multiple scattering by a cluster of scatterers or by
scatterers embedded in a different material from the surrounding matrix can be dealt with
as easily as the simpler problem of a single scatterer in a homogeneous material. The shape
of the scatterer can be arbitrary. The boundary integral method automatically takes into
account the radiation condition. Therefore, this hybrid method can utilize the versatility of
the finite element method for detailed modeling in the near-field and the effectiveness of
the boundary integral in the far-field. Recently, this method has been used by Liu et al.
(1991) and Liu and Datta (1993) to study scattering of impact waves by cracks in a glass
plate. Very good results have been obtained. Other similar hybrid methods which combine
the analytical and the numerical approaches by dividing the geometry into near-field and
far-field have been attempted by Dasgupta (1980), Murakami et al. (1981), Shah et al.
(1982, 1986), Gupta et al. (1982), Eilouch and Sandhu (1986), Mita and Luco (1987),
Mossessian and Dravinski (1987), Romanel and Kundu (1993), to name a few. In general,
the advantages of one method are the disadvantages of the other, therefore a hybrid method
is developed by taking advantage of the good features of each method while at the same
time minimizing their undesirable features.

In this paper, the transient scattering of SH waves by surface-breaking and sub-surface
cracks in a half-space is studied. The shape of the incident pulse is a Ricker wavelet
(Ricker, 1977). Numerical results are presented for the surface displacements, crack opening
displacements, and stress intensity factors as functions of frequency and time. SH waves
are particularly attractive because of the simple nature of their interaction with cracks and
other boundaries. Thus the movement of SH waves can be clearly observed and the
mechanism of the SH-wave scattering by cracks can be easily understood. This study is an
important step for the investigation on more complicated scattering problems.

2. PROBLEM DESCRIPTIOl"

The geometry of the problem considered here is depicted in Fig. 1. A half-space
containing a surface-breaking crack (or a sub-surface crack) of length d is subjected to a
plane SH-wave with an angle of incidence e. The problem geometry, material properties,
and incident pulse are invariant in the y-direction. The problem has only a y-component of
nonzero displacement, Un which is a function of x, z, and t. Thus the corresponding
governing equation of motion is given by

(
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where f3 is the shear wave velocity. The surface of the half-space and the crack faces are
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Fig. I. Geometry of the problem.
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assumed to be free of tractions. Usual radiation conditions should be satisfied by the
scattered wave field at infinity.

3. FORMULATION

First the problem is solved in frequency domain, then the transient response is obtained
by Fourier inversion of the spectrum. After Fourier transformation the governing equation
in frequency domain takes the following form:

(2)

where U is y-direction displacement in the Fourier transformed domain and OJ is the circular
frequency.

This problem is solved by a hybrid method which combines the finite element dis­
cretization of the vicinity of the crack with the boundary integral representation of the
exterior scattered field. To solve the problem by this method, the crack should be completely
enclosed by a fictitious contour C as shown in Fig. I. In addition, two regions, R i and R",
are introduced here. The interior region, R h is bounded by a fictitious boundary Band
discretized with finite elements. The exterior region, Re , is bounded inside by the contour
C. Based on the Betti's reciprocal theorem, an integral representation over C is used to
solve for the exterior scattered field. The area between the contour C and boundary B is
shared by both regions. The finite element analysis of the interior region is considered first.

3.1. Finite element analysis for interior region
The interior region, which encloses all the inhomogenities, is discretized into a set of

finite elements. The finite element equations are derived in the frequency domain using a
variational principle. In order to have a correct simulation for the stress field near the crack
tips, six-node triangular quarter-point singular elements are used around the crack tips.
The equation of motion for each element can be written in the following form:

(3)

where Ke and Me are the stiffness and mass matrices, respectively, f e is the vector of nodal
forces due to surface tractions, and de contains the nodal displacements of the element.
Equation (3) can be written in a simple form:

(4)

where the matrix Se is the elemental impedance matrix and defined by

(5)

The matrix Se is computed for each element and assembled into global matrix S. Therefore,
the global equation of motion becomes

Sd = f. (6)

Here, d and f represent all the nodal displacements and forces, respectively. The nodal
displacement dB at the boundary B can be separated from the interior nodal displacement
dJ • Partitioning of the matrices in eqn (6) results in the following equation



4022 Shaw-Wen Liu et al.

(7)

where f B denotes the nodal force at the boundary Band f, the interior nodal force. Since
for problem considered here only the boundary B is subjected to surface tractions, there
are no nodal forces on the interior nodes, i.e., f I = O. Thus eqn (7) becomes

(8)

This completes the analysis of the finite element formulation for the interior region.
However, the nodal displacements dB and dI in eqn (8) can not be solved at this moment
because the nodal force f B is unknown. Thus, the formulation of the problem in the exterior
region is considered next.

3.2. Boundary integral representation for exterior region
The exterior region is modeled by using a boundary integral representation. The total

displacement field can be decomposed into two parts

(9)

where the superscripts Sand F denote the scattered and free fields, respectively. The free
field can be obtained by solving the problem of the flawless half-space subjected to an
incident SH-wave. The displacement solution of the free field is given by

V F = 2A cos(I]z)e'~X, (10)

where i = J-'::1, I] = k 2 cos e, ~ = k 2 sin e, k 2 is the wave number, and A is the amplitude
of the incident wave. The scattered field is more complicated and can not be expressed by
a simple form. Here, the displacement of the scattered field is represented by a line integral
based on the Betti's reciprocal theorem as discussed below.

Let us consider two solution states J and II. Using Betti's reciprocal theorem these two
states can be related in the following manner

f (F'VII~FIIVI)dV= f(TIIV'-T'V')dSI I I I. I I ! I ~

V S

(11)

where F, is the body force per unit volume and T, is the surface traction per unit area.
Subscript i indicates the ith direction. Superscripts I and II represent states J and II,
respectively. For an antiplane problem all nonzero forces and displacements act in the y­
direction. So for our problem the volume integral and the surface integral may be reduced
to surface integral and line integral, respectively. Then the general eqn (II) takes the form:

is (FIVII - F II VI) dS = JeTIIVI - TIVII) dL. (12)

In order to derive the boundary integral representation, first we need to solve the
Green's elastodynamic state which corresponds to the problem of a flawless half-space
subjected to a time harmonic line load at a source point (x,,, zp). The equation of the Green's
problem is given by
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(13)

where the superscript G represents the Green's elastodynamic state, p is material density,
and b denotes the Dirac delta function. In addition, the Green's functions should satisfy
stress-free boundary condition at the surface of the half-space and radiation condition at
infinity. Then eqn (13) is solved to obtain the displacement of the Green's elastodynamic
state

( 14)

where V2 = Jki ~k2 and J1 is the shear modulus. The corresponding stresses can be obtained
by the constitutive relations. Finally, the boundary integral representation of the scattered
field is derived next.

First, the Betti's reciprocal theorem, eqn (12), is applied to the region bounded by
contour C. Two solution states considered here are the free field and the Green's field with
its sources (xp , zp) on boundary B. Thus, the body forces for both fields are zero in this
region. These two states can be related in the following manner

0= f (TGUF~TFUG)dC.
e

(15)

Secondly, the Betti's reciprocal theorem is applied to the exterior region. The scattered field
is taken to be the first state and the Green's solution is the second state. The body force of
scattered field is zero inside this region. Reversing the direction of integration, eqn (12)
becomes

US(Xj"Zp) = f (TGU"-r'UG)dc.
c

(16)

Therefore, both eqn (15) and eqn (16) have the same direction of integration. They can be
added together to form the boundary integral representation of the scattered field

US(Xp,ZjJ = f (TGU-TUG)dC.
c

( 17)

The boundary integral representation of the total displacements at the nodal points on
boundary B is then obtained by using eqn (9)

U(Xp, zp) = f (TGU - TUG) dC+ UFo
e

(18)

3.3. Combination ofFEM and BIR
The integral in eqn (18) can be discretized by using the finite element formulation.

Then eqn (18) becomes

(19)

where ABE and ABf are complex matrices and d~ is the free field displacement at nodal points
on boundary B. Now combining eqn (19) with the second equation of eqn (8), we obtain
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[I-A
BB -AB'J{dB} = {d~}.

SIB SII d, 0
(20)

Equation (20) is usually a large sparse unsymmetric complex matrix equation. For a
transient problem the finite element meshes should be fine enough to capture the charac­
teristics of wave at the highest frequency. This increases the degrees of freedom of the
problem. Thus some numerical techniques are needed to reduce both computation time
and required storage. A compacted data structure (Nour-Omid and Taylor, 1984) is adopted
to store only the non-zero terms of the sparse matrix in a vector form, then the biconjugate
gradient method (Sarkar et al., 1981 and Sarkar, 1987) is used to solve eqn (20). The
biconjugate gradient method, which is an iterative method, involves only the multiplication
of matrix and vector, therefore the sparsity pattern of the matrix is not destroyed. For the
scattering problem considered here, these numerical techniques are very efficient and always
provide a satisfactory solution.

Once the nodal displacements (dB and d/) are solved from eqn (20), the displacements
in the interior region and in the exterior region can be easily computed by using finite
element method and boundary integral representation, respectively. The transient response
is then obtained by Fourier inversion of the spectrum.

3.4. Crack opening displacements and stress intensity factors
The crack opening displacements C, is obtained by the displacements along the crack

faces. For a vertical crack considered here, the crack opening displacement is given by the
following form

Cv = V(O+,z)-V(O-,z). (21 )

Around the crack tip six-node triangular quarter-point elements (Barsoum, 1977) are
chosen to obtain the correct square root singularity near the tip. The stress intensity factor
Km can be calculated from the crack opening displacements near the crack tip. The formula
for computing the stress intensity factor was given by Datta and Shah (1982) as the
following form:

(22)

where L is the length of the singular element along the crack faces and Vi is the displacement
at node i as defined in Fig. 2.

d 2 3

1
Fig. 2. Crack-tip elements.
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4. NUMERICAL MODELING AND ACCURACY

4025

In this study two vertical cracks of length d are considered. One is a surface-breaking
crack and the other is a sub-surface crack which is deeper than the surface-breaking
crack by d/4. The variables used here are presented in nondimensional form. The spatial
coordinates are normalized with respect to the length of the crack. The nondimensional
frequency (/) and nondimensional time (1) are defined as

and

- jd
f=­

f3

_ tf3
t=­

d'

(23)

(24)

respectively. The calculated responses are normalized relative to amplitude of the incident
wave. The normalized shear wave velocity is equal to 1.0.

In order to have an accurate simulation and a better visualization for the phenomena
of transient wave scattering, a careful modeling is necessary. In general, the characteristic
wavelengths of the incident pulse must be of the same order of magnitude as the charac­
teristic dimension of the flaw, such as the crack length. On the other hand, the maximum
frequency and the number of sample points must be determined so that not only the
characteristics of the transient scattering can be captured but also the numerical accuracy
and computational cost can be optimized. In this study,!= 4.0 is chosen as the maximum
frequency and 64 sample points are used for the numerical modeling. The incident pulse is
a Ricker wavelet defined as

(25)

where fc is the characteristic frequency of the pulse. The Fourier transform of the Ricker
wavelet is

2P (f 2

)U(f) = - ~-. exp - - ,
fif: f~

(26)

which has a peak amplitude atf = f .. Figure 3a shows the shape of the Ricker pulse with
characteristic frequency lc = 1.0 and the corresponding spectrum is shown in Fig. 3b. In
this paper, only1 = 1.0 are considered, in which the wavelength of the shear wave is equal
to the crack length d.

Once the maximum frequency is determined, the size of the largest finite element can
be chosen according to the desired numerical accuracy. Generally, 10 nodes per wavelength
are adequate to accomplish the accuracy desired.

To verify the numerical accuracy, the zero-scattering test was checked first to keep the
relative error of the computed total displacement and the incident field displacement within
5%. We also tested the accuracy by comparing the results obtained by the hybrid method
used here with other available solutions. Figures 4 and 5 show the crack opening dis­
placements at three different frequencies (k2d = 1.0, 4.7, and 15.7) and the stress intensity
factors (0 ~ k 2d ~ 20), respectively, for a surface-breaking crack in comparison with those
presented by Stone et al. (1980). The angle of incidence is e= 45°. Agreement is found to
be quite good. Then the detailed numerical results are studied in the next section.

5. RESULTS AND DISCUSSIONS

The surface displacements, crack opening displacements, and stress intensity factors
are presented in both frequency and time domains for incident angle e= 30. For the
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Fig. 3. (a) The shape of Ricker pulse and (b) the corresponding spectrum with characteristic
frequency]; = 1.0.

responses in frequency domain, only the spectra caused by the delta pulse are presented.
Because the frequency responses corresponding to any other incident pulses, such as a
Ricker pulse, can be easily obtained by multiplying these spectra by the spectrum of the
incident pulse itself. Note that in order to have a better visualization for the wave propa­
gation the time when the peak value of Ricker pulse arrives at the origin (x = z = 0) has
been set to [= 3.2 for all the figures showing the transient responses in this paper.

5.1. Surface-breaking crack
Figure 6 illustrates the interaction between a plane SH-wave propagating at an incident

angle eand a surface-breaking crack in a half-space. This figure may be helpful to under­
stand the following numerical results which contain the mechanism of reflection and
diffraction occurred around a crack.

Displacement responses in frequency and time domains at 70 different points on the
free surface from x/d = - 2.0 to 2.0 are shown in Figs 7a and 7b, respectively. Due to the
reflection from the left crack-face, larger amplitudes are observed in both figures in the
region x ::::; 0 close to the crack mouth. The response spectra become more complicated at
higher frequencies because the scattering is more sensitive to short wavelength. Note that
two thicker curves in Fig. 7b indicate the responses at the crack mouth. The responses in
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Fig. 5. Comparison of stress intensity factors of a surface-breaking crack in a half-space subjected
to incident SH-waves with incident angle () = 45°.

the region (-1/8 ~ x/d ~ 1/8) which has dense observation points are obtained by finite
element method. Beyond that region, the results are calculated from boundary integral
representation.

From Fig. 7b it is observed that the plane SH pulse with incident angle () = 30° arrives
at the crack mouth when r = 3.2 and causes larger amplitudes on the left side of crack
mouth. Then two scattered waves diffracted from the crack-tip appear anti-symmetrically
on the free surface during r~ 3.3 ~ 4.6 and r~ 5.1 ~ 6.3, respectively. The first one orig­
inates from the diffraction of direct incident waves by the crack-tip at r~ 2.3. Note that
part of first scattered waves are mixed with incident waves because their arrival times are
very close. The second one is caused by the diffraction occurred at r~ 4.1 when the reflected
waves from the free surface interact with crack-tip. In general, the scattered wave field
contains a great deal of information about the characteristics of the crack. As shown in
Fig. 7b, the crack can be easily located by the scattered waves observed on the free surface.
Based on the transit times for scattered waves following various paths around the crack,
the depth of crack-tip can be estimated by the following equation,
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waves; 3 = reflected wave from the free surface of half-space; 4 = reflected wave from crack face;

5 = diffracted wave from crack-tip.

(27)

where lit is the time difference for scattered waves arriving at x = XI and X2 on the free
surface.

Figure 8a shows the response spectra of crack opening displacements (COD) at the
crack mouth and in the middle of crack. It is found that the amplitudes of COD at the
crack mouth are usually larger than those in the middle of crack and the number of peak
amplitudes at the crack mouth is about twice as many as that in the middle of crack. It is
important to notice that the regular appearance of peaks in Fig. 8a at some specific
frequencies can provide useful indication for the geometry of the crack. The frequency at
which the resonance peak occurs is called the resonance frequency which is closely related
to the crack length. For the resonance frequencies of the two-dimensional scattering prob­
lems, no closed form solutions are available. However, for a similar one-dimensional model,
the resonance frequencieslr can be expressed as

- f,d 1
f,=7J=4(2n+l), n=0,1,2, ... (28)

It is interesting to see that the resonance frequencies shown in Fig. 8a are close to the values
calculated from eqn (28). Thus, the one-dimensional model may be a good approximation
for the problem considered here.

Figure 8b shows the transient crack opening displacements along the whole crack
length from z/d = °to 1. From Figs 8b and 6, the wave propagation and scattering around
a surface-breaking crack can be understood thoroughly. The incident pulse arrives at the
crack-tip when f ~ 2.3 and a diffracted wave is created by the crack-tip at the same time.
Then the incident wave and the diffracted wave reach the crack mouth at f ~ 3.2 and 3.3,
respectively. Therefore very large amplitudes are observed near the crack mouth. The
reflected wave from the free surface (x ~ 0) strikes the left crack face from f ~ 3.2 to 4.1.
This causes very large CaDs along the whole crack length. The reflected wave is then
diffracted by the crack-tip as soon as it travels to the crack-tip at f~ 4.1. It is observed
clearly in Fig. 8b that this diffracted wave propagates back and forth along the crack and
its amplitude is dispersed gradually. Comparing Figs 8b and 7b, the phenomena of wave
scattering around the crack are consistent with the responses observed on the free surface.

The response spectrum and the time history of stress intensity factor are shown in Figs
9a and 9b, respectively. Since the stress intensity factor is related to the COD, it is found
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Fig. 7. Surface displacements for the case of surface-breaking crack: (a) response spectra and (b)
time histories on the free surface from x/d = -2.0 to 2.0.

that the response spectra of KIll shown in Fig. 9a and COD at the crack mouth shown in
Fig. 8a have similar patterns. In Fig. 9b, a pulse appears at r~ 2.3 because the direct
incident wave arrives at crack-tip at that time. At time around r~ 4.1, very large amplitudes
are produced due to the arrivals of reflected waves of incident and first diffracted waves
from the free surface. Finally, the appearance of a small pulse at r~ 6.1 is caused by the
arrival of reflected wave of second diffracted wave from the free surface. As was expected,
the result of KIll shown here coincides with the result of near-tip COD shown in Fig. 8b.

5.2. Sub-surface crack
After a detailed study of the surface-breaking crack in the last sub-section, the case of

sub-surface crack becomes much easier. Figures lOa and lOb show the response spectra
and the time histories of the displacements on the free surface, respectively. Due to the
existence of two tips for the sub-surface crack, it is expected that more diffracted waves will
be created by tips. The incident wave is first diffracted by the lower tip at r~ 2.1 and its
diffracted wave arrives at xjd = 0 - ±2.0 on the free surface during r~ 3.4 - 4.5. Then
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Fig. 8. Crack opening displacements for the surface-breaking crack: (a) response spectra at crack
mouth and in the middle of crack and (b) time histories along the whole crack length.

the incident wave is diffracted by the upper tip at f~ 3.0. It is observed in Fig. lOb that
this diffracted wave causes striking responses on the free surface during r~ 3.2 '" 5.0.
Similarly, the reflected wave from the free surface is diffracted by the upper and lower tips
at r~ 3.3 and 4.3 and their diffracted waves travel to x/d = 0 '" ±2.0 during r~ 3.7'" 5.4
and 5.5 '" 6.6, respectively. It is found that the diffracted wave caused by lower tip can be
easily distinguished from the other diffracted waves. All of the diffracted waves can be used
to find the location of crack. Furthermore, the depth of crack tips and crack length can be
estimated by making use of eqn (27).

Figure Iia shows the response spectrum of COD in the middle of the sub-surface
crack. It is observed that a series of distinct peaks and vales appears by turns in the response
spectrum. Comparing with a similar and simple one-dimensional vibration problem in
which both crack-tips are considered to be nodes in the normal modes, the peaks and vales
seem to correspond to the antinodes and nodes. Similarly, the response spectra of stress
intensity factors shown in Fig. I2a also appear as a series of regular peaks for both upper
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Fig. 9. Stress intensity factors for the surface-breaking crack: (a) response spectrum and (b) time
history.

and lower tips. The frequencies corresponding to these peaks and vales are the resonance
frequencies which are closely related to the crack length. However, an exact relationship
between resonance frequencies and crack length is not available. In fact, the resonance
frequencies are not only related to the crack length but also related to the distance between
the free surface and the upper tip, boundary conditions of the system, material properties,
and incident wave type.

Figure IIb shows the time histories of COD along the whole crack length from
z/d = 0.25 to 1.25. It is found that the pattern of COD response here is analogous to that
of surface-breaking crack shown in Fig. 8b. The incident SH-pulse travels to the lower and
upper tips at f';:::5 2.1 and 3.0, respectively. It is seen during this period that the amplitudes
of CaDs become larger from lower tip to upper tip. Thus we may expect that stress intensity
factor for upper tip at f';:::5 3.0 has higher value than that for lower tip at f';:::5 2.1. This is
exactly what we observe in Fig. 12b which shows the transient stress intensity factors for
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Fig. 10. Surface displacements for the case of sub-surface crack: (a) response spectra and (b) time
histories on the free surface from x/d = - 2.0 to 2.0.

both tips. In a little while, the reflected wave from the free surface arrives at upper and
lower tips at r,;:;:; 3.4 and 4.3, respectively. Similarly, the effects of the reflected wave on the
COOs and stress intensity factors can be clearly observed in Figs IIband 12b. Note that
the lower tip has the largest value of stress intensity factor around r,;:;:; 4.3 while the reflected
wave arrives. Compared to the incident and reflected waves, the diffracted waves are smaller
so that the effects of diffracted waves are not obvious during the period r,;:;:; 2.1 to 4.3.
However, after the incident and reflected waves propagate away from the crack, the effects
of diffracted wave caused by the interaction between reflected wave and lower tip at r,;:;:; 4.3
are very striking as shown in Figs II band 12b. It is seen obviously that this diffracted wave
reaches the upper tip at r,;:;:; 5.3. Although the diffracted waves become smaller after r,;:;:; 5.3,
the effects of diffracted waves can still be observed.

6. CONCLUSIONS

The scattering of SH waves by a surface-breaking and a sub-surface cracks has been
investigated numerically by a hybrid method which combines the finite element method
with the boundary integral representation. A detailed study on the surface displacements,
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Fig. II. Crack opening displacements for the sub-surface crack: (a) response spectrum in the middle
of crack and (b) time histories along the whole crack length.

crack opening displacements, and dynamic stress intensity factors gives the following
concluding remarks:

1. Due to the simple nature of SH-wave, the movement of individual diffracted wave or
reflected wave can be easily identified and clearly observed. Hence the mechanism of
SH-wave scattering by cracks can be understood thoroughly. This study is an important
step for the further investigation on more complicated scattering problems, such as
inplane problems.

2. Numerical results show that the location, length, and depth of the crack can be suc­
cessfully detected and measured by the surface responses. This study is interesting in the
viewpoint of quantitative nondestructive evaluation (QNDE).

3. The hybrid method adopted here is a very efficient method and suitable modeling
for solving the forward problems. To solve an inverse problem, a large number of
corresponding forward problems need to be solved. Therefore this hybrid method may
be available for inverse problems.
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